CHIP INE 集创北方

ICN2053 编程指导

ICN2053 框图

ICN2053 管脚定义

ICN2053 管脚定义同通用 LED 显示驱动芯片相同

指令定义与配置寄存器

芯片包含一个简单的 16bit 移位寄存器,灰度值和配置值都会锁存到移位寄存器里面。通过计数 LE 信号的 长度来解析控制命令,不同的 LE 长度表示不同的命令。例如长度为 1 的 LE 信号表示"Data Latch"命令,用来 控制移位寄存器锁存灰度值,将移位寄存器里的 16bit 数据送给 SRAM。表 1 列出了所有命令及其释义。

拍マルメ	指	솏	定	义
------	---	---	---	---

指令名称	LE	指令描述
DATA_LATCH	1	锁存 16bit 数据送给 SRAM
WR_DBG	2	写调试寄存器
VSYNC	3	更新显示数据
WR_CFG1	4	写配置寄存器 1
RD_CFG1	5	读配置寄存器 1
WR_CFG2	6	写配置寄存器 2
RD_CFG2	7	读配置寄存器 2
WR_CFG3	8	写配置寄存器 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
RD_CFG3	9	读配置寄存器 3
WR_CFG4	10	写配置寄存器 4
RD_CFG4	11	读配置寄存器 4
EN_OP	12	使能所有输出通道
DIS_OP	13	关闭所有输出通道
PRE_ACT	14	写使能
MBIST	15	使能 SRAM 校验和读状态

备注 1: LE 的长度是指当 LE 为高电平时, DCLK 的上升沿个数。如图 2 所示, 第一个 LE 信号的长度为 1, 亦即该命令为 "Data Latch"命令。

备注 2: 每帧先发 PRE_ACT 和 ENOP, 然后再配置寄存器, 配置每个寄存器前也需要先发 PRE_ACT,

LE 信号和 SDI 信号的建立保持时间如下表所示

建立保持时间

信号名称	MIN	备注
T _{su_LE}	7ns	
T _{hd_LE}	7ns	
T _{sw_LE}	10ns	
T _{su_SDI}	3ns	
T _{hd_SDI} ,	3ns	

通过"Data Latch"命令锁存灰度数据,第1个16bit 数据作为通道15的第一行数据,第2个16bit 数据作为通道14的第一行数据,第17个16bit 数据作为通道15的第二行数据。表3给出了全部32行数据的对应关系

数据指令

Data Order	Line	Channel
1		Channel 15 (OUT15)
2	Line 1	Channel 14 (OUT14)
•••••	TITUE I	
16	Line 1 Line 1 Channel 14 (OUT) Channel 0 (OUT) Channel 15 (OUT) Channel 14 (OUT) Channel 14 (OUT) Channel 0 (OUT) Channel 15 (OUT) Channel 15 (OUT) Channel 14 (OUT) Channel 10 (OUT) Channel 10 (OUT)	Channel 0 (OUT0)
17		Channel 15 (OUT15)
18	Line 2	Channel 14 (OUT14)
•••••		
32		Channel 0 (OUT0)
		••
497		Channel 15 (OUT15)
498	Data Order Line Channel 1	
		e Channel Channel 15 (OUT15) Channel 14 (OUT14) Channel 0 (OUT0) Channel 15 (OUT15) Channel 14 (OUT14) Channel 14 (OUT14) Channel 0 (OUT0) Channel 14 (OUT14) Channel 15 (OUT15) Channel 15 (OUT15) Channel 15 (OUT15) Channel 10 (OUT0) 32
512		
\sim		

CHIP

显示时序

显示时序如见上图:

- a) 时刻 a->时刻 b, 首先发送 VSYNC(3 个 DCLK 宽度的 LE 高电平), 换帧, 时刻 b 之后可以开始锁存下一帧的数据;
- b) 时刻 b->时刻 c, 发送 4 个 GCLK;
- c) 时刻 c->时刻 e, 一行的显示时间, 总共有 138 个 GCLK;
- d) 时刻 d, 换行时刻;
- e) 时刻 d->时刻 e, 换行时间, 时刻 d之后还需要连续发送 4个 GCLK (包含在 138GCLK 之内);
- f) 时刻 e 为下一行开始。

配置寄存器时序

配置寄存器时序见上图:

- g) 时刻 a->时刻 b, 发送 PRE_ACT(14 个 DCLK 宽度的 LE 高电平);
- h) 时刻 c->时刻 d,发送 EN_OP(12 个 DCLK 宽度的 LE 高电平);
- i) 时刻 e->时刻 f, 发送 PRE_ACT;
- j) 时刻 g->时刻 h, 写寄存器 1(4 个 DCLK 宽度的 LE 高电平);
- k) 时刻 i->时刻 j, 发送 PRE_ACT;
- I) 时刻 k->时刻 I, 写寄存器 2(6 个 DCLK 宽度的 LE 高电平);
- m) 按步骤 k)和 l)配置寄存器 3 和寄存器 4。

寄存器

寄存器 1

Bit	Name	Default	Description
15	Reserved		
			开路检测
14	OPEN_DET	1 ′ h0	0:关闭
			1:打开
13	TEST	1 ' h0	测试寄存器
			扫描行数
			0:1行
12.0	12:8 SCAN_LINE	5 / b1 F	1:2行
12:8 SCAN_L	SCAN_LINE	SCAN_LINE 5' NIF	2:3行
			31: 32 行
			低灰麻点/高亮耦合优化
			0:测试模式
7:6	ОРТ	2 ' h1	1:2级优化(推荐值)
			2:3级优化(优化高亮耦合推荐值)
	15Reserved14OPEN_DET13TEST12:8SCAN_LINE7:6OPT5:4TEST3:0TEST		3:测试模式
5:4	TESŤ	2'h3	测试寄存器
3:0	TEST	4'h0	测试寄存器

备注: SCAN_LINE 为 5' h1F, PWM_DISP 为 2' h0,则芯片会发送 64*32 组 GCLK,每组包含 138 个 GCLK。

寄存器 2

Bit	Name	Default	Description	
15	Reserved			
	BitName15Reserved14:10ADJ9I_DIV4N8:1IGAIN		消隐控制寄存器	
14.10		5 ' h1F	1-31级分别对应寄存器	
14.10	ADO		cfg2[14:10]=00000-11111	
			使能寄存器 cfg3[2] 推荐 R=31, G=28, B=23	
	9 I_DIV4N		恒流源输出配置寄存器,	
0			1:IOUT=19*IGAIN/(Rext*256)	
9			0:IOUT=19*IGAIN/(Rext*1024)	
			lgain≥64(必须)	
	ADJ I_DIV4N IGAIN			恒流源输出配置寄存器,
0.1	тсаты	0/hEE	IOUT=19*IGAIN/(Rext*256) @ I_DIV4N=1	
0.1	IGAIN	0 IIFF	IOUT=19*IGAIN/(Rext*1024)@ I_DIV4N=0	
			lgain≥64(必须)	
0	TEST	1 ′ h1	测试寄存器	

寄存器 3

Bit	Name	Default	Description
15	Reserved		
14:12	TEST	3 ' h4	测试寄存器
11:8	TEST	4 ′ h0	测试寄存器
			低灰白平衡调节
7:4	PWM_ALL	4 ′ h0	1-16级分别对应寄存器 cfg3[7:4]=1111-0000
			使能寄存器 cfg4[14]
3	TEST	1 ′ h0	测试寄存器
			消影功能:
		1 / h1	1: 打开
2	UP_SEL		0:关闭
			消隐级别: cfg2[14:10] 推荐 R=31, G=28, B=23
1:0	TEST_CFG	2 ′ h3	测试寄存器

寄存器 4

Bit	Name	Default	Description
15	Reserved		
			低灰白平衡调节
1/1		1 ′ h0	1:打开
14			0:关闭
			对应调节寄存器: cfg3[7:4]
13	TEST	1 ′ h0	测试寄存器
12	TEST	1 ′ h0	测试寄存器
11:10	TEST	2 ′ h0	测试寄存器
9:8	TEST	2 ′ h0	测试寄存器
7		1 ′ h0	0:关闭开路检测
/	OPEN_SCAN	1 110	1: 复位所有像素开路状态,开启开路检测
6	TEST	1 ′ h1	测试寄存器
5:4	TEST	2 ′ h0	测试寄存器
			恒流源电流微调符号位
3	TRIM_ADD_EN	1' h0	1: IOUT=IOUT*(1+ TRIM_ADJ *0.4%)
			0: IOUT=IOUT*(1- TRIM_ADJ *0.4%)
2:0	TRIM_ADJ	3' h0	恒流源电流微调寄存器

主界面设置

1. 灰度级数

ICN2053 采用的双沿显示,请在计算灰度级数的时候按 GCLK 的双沿计算

2. 刷新倍率

刷新倍率固定 8 倍,每行 138CLK, 寄存器值 cfg1[5:4]=11, cfg1[13]=0

3. 刷新频率

固定 8 倍频,推荐刷新频率 3840Hz。

CHIP

扩展界面建议

1. 消隐设置

开启消隐功能,使用勾选菜单。勾选时 cfg3[2]=1,不勾选 cfg3[2]=0。 消隐能力调节,使用左右滑动条,右侧配合上下点选菜单。 总共 32 级,1-32 级分别对应寄存器 cfg2[14:10]=00000-11111。 Default 值为勾选,等级为: R=32, G=29, B=24

2. 低灰白平衡调节

开启低灰白平衡调节,使用勾选菜单。 勾选时 cfg4[14]=1,不勾选 cfg4[14]=0。 低灰白平衡调节,使用左右滑动条,右侧配合上下点选菜单。 总共 16 级,1-16 级分别对应寄存器 cfg3[7:4]=1111-0000。 Default 值为不勾选。

3. 低灰麻点优化

使用上下点选菜单,共4级。1-4级分别对应寄存器 cfg1[7:6]=00-11 Default 值为2级。建议只使用1和2两级,屏蔽0和3级

4. LED 开路十字架消除

- 1. 关闭 GCLK
- 2. 写 reg1[14]=1, reg4[7]=1,发送 5 个 GCLK (用于清除原有的 open 状态)
- 3. 发送 VSYNC 指令
- 4. 对所有像素点发送 16'hfff(全 1)数据
- 5. 将行地址信 ABCDE 中的 A 信号从 0->1,等待 10 个 clk,然后再将 A 信号从 1->0(防 止 74HC138 锁死)
- 6. 发送 VSYNC 指令
- 7. 发送 32 个 GCLK
- 8. 等待 400us,发送的剩余 GCLK,换行
- 9. 重复步骤 7~步骤 8,发送完所有行的 GCLK,完成所有行的第一组数据显示
- 10. 写 reg4[7]=0, 完成开路检测

ICN2053 关闭开路检测:

1. 写 reg1[14]=0, reg4[7]=0

www.chiponeic.com

5. 电流增益

添加电流增益按钮,设置方式与外部的电流增益相同并联动。 电流增益对应寄存器 cfg2[9:1], lgain=DEC cfg2[8:1]

≚ cfg2[9]=1, lout=18.5x lgain/(Rext x 256)
255≥lgain≥64 50%-200%
≚ cfg2[9]=0, lout=18.5x lgain/(Rext x 1024)
255≥lgain≥64 12.5-50%

✓ 电流增益调整			
R	l)	> 100.39 %	
G	l.	> 100.39 %	
В		> 100.39 %	
─ 同步		默认值	

6. Gamma

根据刷新率和 reg1[7:6]的配置自动选择对应的 gamma 表 (由集创提供), reg1[7:6]建议只能配置为1或者2。

gamma 表命名规则为: ICN2053_XXXXHz_X.gamdat, 前面的 XXXX 代表刷新率, 后面的 X 代表 reg1[7:6] 的配置数值。

7. 起灰

起灰值范围为(gamma 变换前的 8bit 输入数据): 1~16。 根据起灰值调整所选择的 gamma 表,如: 起灰值=9,则将 gamma 变换前的 8bit 输入数据减去 8 再进行 gamma 变换。

设计范例

				×
	红芯片	绿芯片	蓝芯片	
低灰麻点忧化	1	1	1	
消隐等级:	31 🛟 🖌 开启	28 🛟 🗹 开启	23 🗘 📝 开启	
低灰白平衡调节	16 🔽 🗖 开启	16 💌 🗖 开启	16 🔽 🏹 工 开启	
伽马曲线修正:	3840HZ	3840-2 HZ	1920НZ	
	2880HZ	2880-2 HZ	手动设置	
□ 电流增益调整 → 十字架消除设置————————————————————————————————————				
🗌 启用去除坏点	去除坏,	<u>ج</u>		
高级模式		默认设置	发送	

 \wedge

扩展高级设置

- 1. 在扩展属性中添加高级设置按钮,点击按钮弹出高级设置界面。
- 2. 放置一个'默认设置'按钮,点击后所有寄存器值恢复默认值此项应添加确认菜单,防止误操作。
- 3. 放置一个'最近一次修改'按钮,记忆最近一次手动修改值,点击后恢复。
- 4. 放置 4 组寄存器填写框, 16 进制。
- 5. 此界面寄存器值应与扩展属性界面同步。

9一组寄存器	₹					
	高字节(Hex)	低字节(Hex)		高字节(Hex)	低字节(Hex)	
红芯片:	1 d	70	红芯片:	fd	55	
绿芯片:	1 d	70	绿芯片:	f1	55	
蓝芯片:	1 d	70	蓝芯片:	dd	55	
5.三组寄存器	}					
	高字节(Hex)	低字节 (Hex)		高字节(Hex)	低字节 (Hex)	
亚芯片:	40	07	第一组	00	40	
录芯片:	40	07	第二组	00	50	
蓝芯片:	40	07	第三组	00	40	
电流增益调	整					
	·······					_
<			l)		> 100.39 %	
<			0		> 100.39 %	
<			ĺ.		> 100.39 %	
同步					默认值	
血)菌 擠	Ŧ		The second secon	计设置		n l

换行时序建议:

- 1 建议每帧写一组寄存器,四帧写完,或者在显示时间内配置寄存器
- 2 尽量缩小帧间隔时间。建议调整合适的换行时间,从而使1帧内的空白显示时间尽量短。
- 3 调整显示时序,发完 VSYNC 之后先发 4 个 GCLK,然后再进行正常显示,在每行倒数的第 4 个 GCLK 换行 (或者将余辉控制信号提前 4 个 GCLK 开始发)

声明:

□ 北京集创北方科技股份有限公司保留说明书的更改权, 恕不另行通知!

③ 任何半导体产品在特定条件下都有一定的失效或发生故障的可能,用户有责任在使用Chipone产品进行系统设计和整机制 造时遵守安全标准并采取安全措施,以避免潜在失败风险及可能造成人身伤害或财产损失情况的发生!

集智创芯,我公司将竭诚为客户提供更优秀的产品!